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Bicyclization of enynes (1) and related π-compounds
with zirconocene derivatives,2 such as (n-Bu)2ZrCp2,3 has
provided an efficient entry into fused ring systems as well
as monocyclic compounds. In particular, the Zr-promoted
bicyclization-carbonylation tandem4 has served as an
attractive alternative to the Co-based Pauson-Khand
protocol.5 In contrast with the latter, the Zr-based
protocol is applicable to the bicyclization of dienes6 (and
diynes3,7) as well. Several complex natural products, such
as pentalenic acid,8 dendrobine,9 and iridomyrmecin,10
have been synthesized using the Zr-promoted bicycliza-
tion-carbonylation protocol. Another distinguishing fea-
ture of the Zr-based methodology is the fact that the
bicyclization step producing metallacycles (2) can be
performed in a discrete step. In principle, the metalla-
cycles thus obtained can be converted into a variety of
cyclic organic compounds, such as those represented by
4 and 5 (Scheme 1), via protonolysis,2-4 halogenolysis,2-4

and other reactions that organozirconiums can undergo.11
However, these possibilities have not been adequately
explored from the viewpoint of natural products synthe-
sis. Thus, an application of the Zr-promoted bicycliza-
tion-protonolysis tandem to the synthesis of phorbol12
appears to be the only reported example.
We report herein a few protocols for converting 2 into

hydrazulenes involving (i) Pd-catalyzed cyclic carbometa-
lation of alkenes,13 (ii) Ni-catalyzed cyclic addition of
alkenylchromiums to aldehydes,14 and (iii) alkenyl radical
cyclization reaction.15 The synthetic utility and high
efficiency of these procedures are demonstrated by the
synthesis of (()-7-epi-â-bulnesene (6)16 in six steps in 16-

24% overall yield from enyne 710 via 8-12 (Scheme 2).
The maximum ratio of 7-epi-â-bulnesene to â-bulnesene
observed is about 90/10, and all transformations between
8 and 6 proceed with complete retention of stereochem-
istry. It is worth pointing out that the hydrazulene
derivatives 11-13 having the 7R,*8S* configuration are
potentially suitable intermediates for columellarin17 (14)
and other related terpenoids.
With a general goal of developing a widely applicable

methodology for the synthesis of hydrazulenes based on
the Zr-promoted enyne bicyclization and a specific goal
of devising an efficient route to a subgroup of hydrazu-
lenes represented by 6 and 14, enyne 7 was chosen as a
test substrate, and its racemic mixture was prepared in
four steps from (E)-crotyl alcohol via 3-methyl-4-penten-
1-ol18 and its iodo derivative,19 the latter of which was
cross-coupled with LiCtCCH3. The overall yield was
44%. The reaction of 7 with (n-Bu)2ZrCp2 was performed
as previously reported10 except that the initially formed
8 was equilibrated at 50 °C for 5 h to give a 90/10
epimeric mixture in >90% combined yield by 1H NMR.
Treatment of 8 with 2.3 equiv of ICl in CH2Cl2 (-78

°C, 1 h) and then warming to 23 °C over 2 h gave a 76%
yield of 15, which was converted to 16 in 86% yield by
treatment with 2 equiv of dimethyl sodiomalonate in
DMSO (50 °C, 10 h) and then to 17 in 91% yield by
allylation with NaH and allyl bromide in DMF. As
expected, the cyclic Heck reaction13,20,21 of 17 using 5 mol
% of Pd(PPh3)4 and NEt3 (2 equiv) in refluxing MeCN
for 10 h produced the exo-mode cyclization product 18 in
80% yield (Scheme 3).
Although the results shown in Scheme 3 were very

favorable, 18 did not turn out to be a convenient inter-
mediate for the synthesis of terpenoids such as 6 and 14.
Thus, for example, an attempt to excise its exo-methylene
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group with NaIO4
22 in the presence of a catalytic amount

of OsO4 in a 1:1 mixture of t-BuOH and H2O gave the
corresponding 3-oxo derivative in only 10% yield. On the
other hand, the same oxidation of 17 using 0.4 mol % of
OsO4 and 2.5 equiv of NaIO4 afforded 19 in 54% yield.
Its treatment with 4.3 equiv of CrCl2 generated from
CrCl3 and LiAlH4 in the presence of 5 mol % of NiCl2 in
DMF at 23 °C for 4 h14 produced 20 as a stereoisomeri-
cally pure crystalline solid in 74% yield (Scheme 4). Its
stereochemistry was established by X-ray crystallogra-
phy. One potentially attractive feature of this cyclization
reaction is that the two ester groups in 20 are stereospe-
cifically differentiated for further synthetic elaborations.
For more efficient syntheses of simple hydrazulenes,

such as 6, we examined the feasibility of endo-mode cyclic
carbopalladation. Although exo-mode cyclic carbopalla-
dation is dominant,13 we have previously observed the
complete reversal of the mode of cyclic acylpalladation
with the use of enones in the absence of phosphines.23,24
Regiospecific conversion of 7 to 9 in 68% yield via
sequential treatment with n-BuNC and I2, as previously
reported,11 followed by vinylation and PCC oxidation in

74% combined yield, provided 10a in 50% overall yield
from 7. Indeed, its treatment with 25 mol % of Pd(OAc)2,
2.5 equiv of K2CO3, and 1 equiv of (n-Bu)4NCl in DMF
(100 mL per mmol of 10a) at 23 °C for 12 h afforded a
90/10 mixture of 11 and its epimer in 53% combined yield
(Scheme 2). Examination of the reaction mixture by
NMR spectroscopy indicated the extent of exo-mode
cyclization to be <3%, if any. No other monomeric
product was detectable. So, the major side reaction must
be a polymerization process. Conjugate reduction of 11
with (n-Bu)3SnH (5 equiv), ZnCl2 (8 equiv), NH4Cl (2
equiv), and H2O (3 equiv) in THF at 23 °C for 4 h25
produced an 87% combined yield of a 90/10 mixture of
13 and its epimer, which was converted to a 90/10
mixture of (()-7-epi-â-bulnesene (6) and (()-â-bulnesene
in 67% combined yield by treatment with Me2C)PPh3,
as previously reported.16
Treatment of 10a with (n-Bu)3SnH (1.2 equiv) and 7

mol % of AIBN15 in refluxing toluene for 1 d directly
produced 13 in 30% yield, but the reaction was not clean.
To alleviate these difficulties, 10b containing a Me3Si
group was prepared and subjected to the same radical
cyclization conditions. This reaction cleanly produced 12,
which was desilylated with aqueous KF to give 13 in 68%
yield based on 10b (Scheme 2). Interestingly, oxidation
of 12 withm-chloroperbenzoic acid gave a 73% combined
yield of a 60/40 mixture of two regioisomeric eight-
membered lactones. It should also be parenthetically
mentioned here that, although nonstereoselective, a
higher yield of â-bulnesene can be attained by using 8
obtained under milder bicyclization conditions. The
lowest ratio of 8 to its epimer observed is nearly 50/50.
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